Modulation of oxidant and antioxidant enzyme expression and function in vascular cells.
نویسندگان
چکیده
Pathological conditions that predispose to cardiovascular events, such as hypertension, hypercholesterolemia, and diabetes, are associated with oxidative stress. These observations and further data derived from a plethora of investigations provided accumulating evidence that oxidative stress is decisively involved in the pathogenesis of endothelial dysfunction and atherosclerosis. Several enzymes expressed in vascular tissue contribute to production and efficient degradation of reactive oxygen species, and enhanced activity of oxidant enzymes and/or reduced activity of antioxidant enzymes may cause oxidative stress. Various agonists, pathological conditions, and therapeutic interventions lead to modulated expression and function of oxidant and antioxidant enzymes, including NAD(P)H oxidase, endothelial nitric oxide synthase, xanthine oxidase, myeloperoxidase, superoxide dismutases, catalase, thioredoxin reductase, and glutathione peroxidase. Data from numerous studies underline the importance of dysregulated oxidant and antioxidant enzymes for the development and progression of atherosclerotic disease in animal models and humans. Specific pharmacological modulation of key enzymes involved in the propagation of oxidative stress rather than using direct antioxidants may be an approach to reduce oxygen radical load in the vasculature and subsequent disease progression in humans. This review focuses on the modulation of expression and activity of major antioxidant and oxidant enzymes expressed in vascular cells.
منابع مشابه
Effect of Cyclosporine A on the expression of GSTO2 metabolizing enzyme in Jurkat cell line
Cyclosporine A (CsA), a cyclic polypeptide metabolite extracted from the fungus, is used clinically to combat organ graft rejection in transplant subjects. Previous studies have shown that CsA exposure enhances the production of reactive oxygen species (ROS) and lipid peroxidation, which are directly involved in CsA toxicity. To protect cells and organs against ROS, the human body has evolved a...
متن کاملProgesterone antagonizes the vasoprotective effect of estrogen on antioxidant enzyme expression and function.
Oxidative stress plays an important role in the pathogenesis of atherosclerosis and can be effectively influenced by radical scavenging enzymes. Estrogens exert antioxidative effects in the vasculature; however, cotreatment with progesterone may abrogate the vasoprotective effects of estrogen. Therefore, the effects of progesterone on the production of reactive oxygen species (ROS) and expressi...
متن کاملPatterns of Vascular Endothelial Growth Factor Expression in Hematopoietic Malignant Cells
Background and Objective: Vascular endothelial growth factor (VEGF) is a cytokine which is overexpressed in many malignant cancers including leukemia. VEGF plays an important role in tumor invasion and metastasis. Determination of the pattern of VEGF expression in human leukemic cell lines could be useful not only in screening of new antileukemic agents but also to study the mechanism of their ...
متن کاملExpression of Vascular Endothelial Growth Factor in Nasal Polyp and Chronic Rhinosinusitis
Background: Nasal inflammatory disorders such as chronic rhinosinusitis and nasal polyp are among the most prevalent complications with high socioeconomic costs. Vascular Endothelial Growth Factor (VEGF) plays a key role in angiogenesis and cell proliferation. In the present study the effect of VEGF on the development and prognosis of chronic rhinosinusitis and nasal p...
متن کاملCurcumin as an Environmental Potent Antioxidant Decreases Risk of Arthrosclerosis
Background & Aims of the Study: Oxidative stress increases platelet-derived growth factor (PDGF) gene expression in endothelial cells that contributes to vascular dysfunction and atherosclerosis. Oxidative stress generates by dys-regulated redox balance between ROS producing systems and antioxidant systems. Also, Curcumin (Cur) as a main part of tur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 44 4 شماره
صفحات -
تاریخ انتشار 2004